Quasi-monte Carlo in Finance: Extending for Problems of High Effective Dimension

نویسندگان

  • Marcos Eugênio da Silva
  • Thierry Barbe
چکیده

In this paper we show that it is possible to extend the use of quasi-Monte Carlo for applications of high effective dimension. This is achieved through a combination of a careful construction of the Sobol sequence and an appropriately chosen decomposition of a covariance matrix. The effectiveness of this procedure is demonstrated as we price average options with nominal dimensions ranging up to 550 (effective dimension around 300). We believe the method we present is easy to implement and should be of great interest to practitioners.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced Quasi-monte Carlo Methods with Dimension Reduction

In recent years, the quasi-Monte Carlo approach for pricing high-dimensional derivative securities has been used widely relative to other competitive approaches such as the Monte Carlo methods. Such success can be, in part, attributed to the notion of effective dimension of the finance problems. In this paper, we provide additional insight on the connection between the effective dimension and t...

متن کامل

Why Are High-Dimensional Finance Problems Often of Low Effective Dimension?

Many problems in mathematical finance can be formulated as highdimensional integrals, where the large number of dimensions arises from small time steps in time discretization and/or a large number of state variables. Quasi-Monte Carlo (QMC) methods have been successfully used for approximating such integrals. To understand this success, this paper focuses on investigating the special features o...

متن کامل

Estimating The Effective Dimension Of High-Dimensional Finance Problems Using Sobol’ Sensitivity Indices

Problems in many disciplines, such as physics, chemistry, and finance, can be modelled as integrals of high dimensions (hundreds or even thousands). Quasi-Monte Carlo (QMC) methods, which perform sampling using a more uniform point set than that used in MC, have been successfully used to approximate multivariate integrals with an error bound of size O((logN)kN−1) or even O((logN)kN−3/2), where ...

متن کامل

Valuation of Mortgage - Backed Securities in a Distributed Environment

Valuation of Mortgage-Backed Securities in a Distributed Environment Vladimir Surkov Master of Science Graduate Department of Computer Science University of Toronto 2004 Valuation of Mortgage-Backed Securities, regarded as integration in high dimensional space, can be readily performed using Monte Carlo method. The Quasi-Monte Carlo method, by utilizing low discrepancy sequences, has been able ...

متن کامل

The effective dimension and quasi-Monte Carlo integration

Quasi-Monte Carlo (QMC) methods are successfully used for high-dimensional integrals arising in many applications. To understand this success, the notion of effective dimension has been introduced. In this paper, we analyse certain function classes commonly used in QMC methods for empirical and theoretical investigations and show that the problem of determining their effective dimension is anal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004